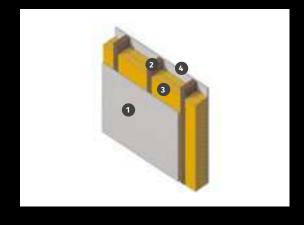
Magply

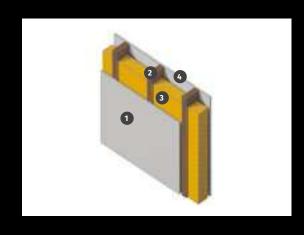
Timber Frame Render Systems Steel Frame Systems Rainscreen Cladding Modular Build Spandrel Panels SIP Panels


TIMBER FRAME (Rockwool)

STANDARD: **BS 476: PART 22: 1987** | TEST DATE: **19th JUNE 2015**

- 9mm Magply
- 38mm x 140mm Section
- 3 2 x Layers Rockwool
- 15mm Gyroc Fireline

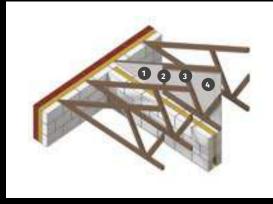
TIMBER FRAME (PIR)


STANDARD: BS EN 1364 - 1 2015 | TEST DATE: 19th JULY 2016

INTEGRITY

- 9mm Magply
- 2 38mm x 140mm Section
- 3 110mm Polyisocyanurate
- 15mm Knauf Fire Panel

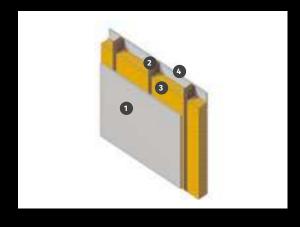
SPANDREL PANEL (UN-INSULATED)


STANDARD: **BS 476: PART 22: 1987** | TEST DATE: **17th FEBRUARY 2018**

INTEGRITY

INSULATION

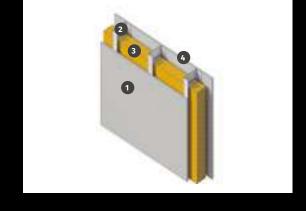
- 12mm Magply
- 100mm Cover Strip
- 38mm x 89mm Section
- 12mm Magply


LOAD BEARING WALL

STANDARD: **BS EN 1365-1: 2012** | TEST DATE: **13**th **OCTOBER 2016**

INTEGRITY

- 9mm Magply
- 38mm x 90mm Section
- **Knauf Insulation**
- 9mm Magply


STEEL FRAME PARTITION

STANDARD: BS EN 1364 - 1 2015 | TEST DATE: 31st MARCH 2017

INTEGRITY

- 1 9mm Magply
- 2 70mm x 32mm Section
- 70mm Mineral Wool
- 4 9mm Magply

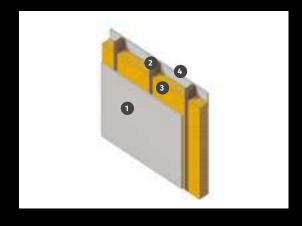
SPANDREL PANEL


STANDARD: BS476 Part 22:1987 Clause 5 | TEST DATE: 17th AUGUST 2017

INTEGRITY

INSULATION

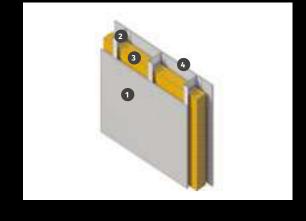
- ▶ 12mm Magply
- ▶ 38mm x 89mm Section
- ▶ 50mm Cavity
- ▶ 38mm x 89mm Section
- ▶ 12mm Magply


LOAD BEARING WALL

STANDARD: BS EN 1365-1: 2012 | TEST DATE: 13th JULY 2018

INTEGRITY

- 1 12mm Magply
- 2 38mm x 89mm Timber Frame
- 3 90mm Knauf Earthwool
- 4 9mm OSB


LOAD BEARING WALL (Light Gauge steel frame)

STANDARD: **BS EN 1365 - 1: 2012** | TEST DATE: **26th FEBRUARY 2019**

INTEGRITY

- 1 12mm Magply with 70mm Internal Cover Strip
- 2 100mm LGS Frame
- 3 100mm Rockwool
- 4 12mm Magply

EXTERNAL CLADDING

STANDARD: EN 13501-1:2007 A1: 2009 | TEST DATE: 14th JUNE 2016

OF REACTION TO FIRE PERFORMANCE

In line with the Building Control Alliance Technical note 18; 'use of Combustible Cladding Materials on residential buildings paragraph 12.7 of AD B2' - use materials of limited combustibility throughout the cladding system.

Introduction

The Magply Euroclass A1 board can be used as a fire mitigation sheathing board for Timber Frame, Steel Frame, Rainscreen Cladding, SIP Panels, Spandrel Panels and Modular Build.

Magply features a Magnesium Oxide formulation which is manufactured from a production process that ensures a very low chloride content enhancing both stability and durability. Magply carries internationally recognised accreditations confirming the boards' ability to deliver fire integrity, racking strength, impact and pull-out resistance.

a l		A THE STATE OF THE	- Care
			d
		M	9
	-	A PER	ě

Thickness (mm)	Width (mm)	Length (mm)	Weight per board (Kg)	Surface m ²
9	1200	2400	28	2.88
		2700	32	3.24
12	800	1200	12	0.96
	1200	2400	38	2.88

Thermal Conductivity	0.19 W/mK
Fire Classification	Class 0 Euroclass EN13501* A1 (Non-Combustible)
Reaction to Fire	Passed BS EN 1716 Reaction to Fire* Passed
Appearance	Solid flat sheet board
Colour & Odour	White, Odourless Change of State None
Vapour Resistance	Vapour Resistance 0.31 MNs/g (EN ISO 12572*)
Melting point	Melting point: 2400°C
Vapour pressure	EN ISO 12572: 2016 = 0.31 MNs.g-1.
Solubility	Solubility: Insoluble in Water
Acoustic	9mm Rw 28dB 12mm Rw 29dB 20mm Rw 31dB EN ISO 717-1:2013

For more information on testing please contact the Magply Technical line: +44 (0)1621 776 252

TESTED & CERTIFIED BY

ASSOCIATIONS

FOR MORE INFORMATION

UNITED KINGDOM

www.magply.co.uk sales@magply.co.uk

IRELAND

www.magply.ie +44 (0) 1621 776 252 +00 (353) 873 625 485 mike@magply.ie